Westinghouse Small Modular Reactors: Innovative Technologies for a Flexible Energy Matrix

Carlos Leipner

September 2017
SMR Workshop
Rio de Janeiro, Brazil
Westinghouse Small Modular Reactors: Innovative Technologies for a Flexible Energy Matrix

Westinghouse Overview
What are we doing today

The Westinghouse SMR
The LWR Solution leveraging AP1000 Technology

The Westinghouse LFR
Deploying Gen IV technology for the future

The Westinghouse eVinci™ Micro Reactor
Ultimate flexibility of Distributed Generation

Leveraging 130+ Years of Technology Heritage & Global Leadership
Westinghouse Electric Company

• Incorporated in 1886 by George Westinghouse

• Responsible for some of the world’s most important achievements:
 – Airbrake for rail cars
 – Commercialization of Alternating Current (AC) technology
 – 1st commercial radio broadcast
 – USS Nautilus nuclear propulsion (S1W)
 – Pioneer in Commercial nuclear power
 – 1st Commercial PWR Shippingport USA

Nearly 50 percent of nuclear power plants globally are based on Westinghouse technology
Westinghouse is Actively Present in all Nuclear Markets in Latin America

Argentina
- Atucha 1 inspection equipment
- Embalse Life Extension Program
- INVAP Engagement

Brazil
- Angra 1 OEM Services, I&C Modernization
- Angra 2 Inspection Services
- INB Fuel Technology Transfer

Mexico
- Laguna Verde 1 and 2 Outage Support
- Steam Dryer Services
- SFPIS, etc.

Westinghouse is the long term partner in Latin America
Why are SMRs Being Considered?

- A replacement for aging fossil fuel plants
- A solution for the needs of small utilities
- A solution for remote and grid limited applications
- A design with the ability to load follow and adjust to varying grid load swings
- Compatible with the financial capabilities of all electric utility companies
- Provides incremental increases in capacity as demand grows
- An additional option for a balanced energy portfolio

SMRs and Large NPPs are complementary generation sources
Westinghouse Small Modular Reactors: Innovative Technologies for a Flexible Energy Matrix

Westinghouse Overview
What are we doing today

The Westinghouse SMR
The LWR Solution leveraging AP1000 Technology

The Westinghouse LFR
Deploying Gen IV technology for the future

The Westinghouse eVinci Micro Reactor
Ultimate flexibility of Distributed Generation

Leveraging 130+ Years of Technology Heritage & Global Leadership
WSMR Technology Overview
- Plant Design Features

• Developed Using a Risk Informed Design Process
• Passive Safety Systems Reduce Core Damage Frequency and Requires no Operator Action for 7 Days
• Below Grade Design is Robust to External Events
• Integral Reactor Design Eliminates Large Break LOCA Class of Design Basis Events
• Utilizes Proven Fuel Design and Control Systems
• Compact High Pressure Containment Results in Reduced Reactor Building Size and Plant Cost
• Modular Construction Deployment Model and High Power Density Limit Economy-of-Scale Impact

Maximizes the use of Licensed & Proven Technology to Reduce Development Time
WSMR Technology Overview
- Reactor Configuration/Specifications

• **Power:**
 - Core Thermal Power: 800 MW(t)
 - Net Electrical Output 240-250 MW(e)

• **Core Design:**
 - 17x17 RFA Fuel (8ft [2.4m] active length)
 - < 5% Enriched U235
 - 89 Fuel Assemblies
 - Soluble Boron
 - 37 Internal CRDMs (Shutdown & Control)
 - 24-Month Refueling Interval

• **Coolant Pumps:** 8 External Horizontal (Seal Less)

• **Dimensions:**
 - Diameter: 11.5ft [3.5m]
 - Height: 91ft [27.7m]

• **Steam Generator:** Recirculating Straight Tube

• **Pressurizer:** Integral with Heaters and Spray
Westinghouse Small Modular Reactors: Innovative Technologies for a Flexible Energy Matrix

The Westinghouse SMR
The LWR Solution leveraging AP1000 Technology

The Westinghouse LFR
Deploying Gen IV technology for the future

The Westinghouse eVinci Micro Reactor
Ultimate flexibility of Distributed Generation

Westinghouse Overview
What are we doing today

Leveraging 130+ Years of Technology Heritage & Global Leadership
The Westinghouse Lead Fast Reactor

- Westinghouse is developing a Lead Fast Reactor (LFR) for global commercialization in the 2030 timeframe.

- The LFR addresses the key challenges to nuclear power expansion:
 - Economic competitiveness
 - Public perception (safety, waste) and Government policies
 - Technology versatility in evolving markets (increased emphasis on flexible operation, and possibly missions beyond electricity)

- Westinghouse selected LFR among all the most well-known nuclear technologies, as the one with best potential to meet the key requirements for global commercialization:
 - Safety, Economics, Marketability
 - (other evaluation criteria also considered – e.g., enhancement in natural resource utilization, technology readiness level, etc.)

Westinghouse made its Generation IV choice: LFR
The Westinghouse Lead Fast Reactor

- Solid safety case, addressing post-Fukushima concerns: walk-away safe
- Economically competitive in the most challenging markets
 - Step-change in economics: competitive with natural gas in the US
 - Versatile technology due to flexible operation and potential missions beyond electricity
- Enhanced sustainability from operation in fast neutron spectrum
 - Better utilization of natural uranium resources, with potential to close the fuel cycle
 - Reduced amount and long-term radiotoxicity of nuclear waste
- Built-in scalability
 - Minimizes re-design/licensing efforts for different power offerings
 - Base version sized at 950 MWt (~400 MWe)
- Technology readiness higher than generally thought
 - Increased International interest for LFR technology
 - Impressive testing facilities operated worldwide
 - Prototype LFR by 2030 followed by commercial units

Partnership is a key element of the Westinghouse LFR program
Westinghouse Small Modular Reactors: Innovative Technologies for a Flexible Energy Matrix

Westinghouse Overview
What are we doing today

The Westinghouse SMR
The LWR Solution leveraging AP1000 Technology

The Westinghouse LFR
Deploying Gen IV technology for the future

The Westinghouse eVinci Micro Reactor
Ultimate flexibility of Distributed Generation

Leveraging 130+ Years of Technology Heritage & Global Leadership
eVinci™ Micro Reactor

Objective: Demonstrate a full scale, 1 MWe micro-reactor by 2022

Key Enablers

• Rapid demonstration with small, full scale models
• National lab rapid prototyping experience for NASA
• Integrate design & advanced manufacturing
• Heat pipe technology allows easier electrical demonstration
• Leverage reputable materials and fuel
• Utilize performance based licensing process in the U.S. and Canada

2012 – DUFF, Heat Pipe Reactor Demonstration, LANL

2017- KRUSTY, Full Scale Space Reactor Demonstration, LANL
eVinci™ addresses complete energy needs in remote applications
Westinghouse Small Modular Reactors: Innovative Technologies for a Flexible Energy Matrix

Westinghouse Overview
What are we doing today

The Westinghouse SMR
The LWR Solution leveraging AP1000 Technology

The Westinghouse LFR
Deploying Gen IV technology for the future

The Westinghouse eVinci Micro Reactor
Ultimate flexibility of Distributed Generation

Leveraging 130+ Years of Technology Heritage & Global Leadership
Fueling the Future Through Innovation

- Advanced cladding materials, such as AXIOM™ and Lined Optimized ZIRLO™
- TRITON11™ revolutionary BWR fuel design
- VVER-1000 and 440, next-generation design for Russian-type reactors
- EnCore™ Fuel; shown here are lead test rods in the Westinghouse Ultra-High Temperature (UHT) test facility
Modeling and Simulation for Fuel Performance

- Consortium for Advanced Simulation of LWRs (CASL)
 - Vision: Create a virtual reactor for predictive simulation of LWRs
 - Challenge areas: DNB, cladding integrity, reactor vessel integrity, crud, fretting, PCI, FA distortion
 - Relates to power uprates, high burnup, life extension aspects
- Overall goals for a true multiphysics approach:
 - Better decision making capability for issue diagnosis and change evaluations
 - Operational enhancements through better understanding of design margin
- VERA: Virtual Environment for Reactor Applications
Summary

- Westinghouse continues to be a **leader** in the nuclear sector
- Westinghouse continues to be **committed** to the successful and safe reactor operations in Latin America and the world
- Investing in **innovation** to drive advanced nuclear technologies
- Westinghouse is developing Small Modular Reactor technologies:
 - LWR Westinghouse SMR – leveraging AP1000™ technologies
 - LFR Design – Gen IV for the future
 - eVinci Micro Reactor – enabling flexibility of applications

Westinghouse: Partnering with our global Customers to provide safe, reliable, clean, competitive nuclear generation for years to come!